

Fundamental Space Biology

Cell Science Program Overview and Status

2004 NASA Cell Science Conference

February 27, 2004

Nancy D. Searby
Fundamental Space Biology Program

Fundamental Space Biology Program

Changes in the past year

NASA: From ReMaP to the Human Exploration Initiative

OBPR:

 New Leadership - Howard Ross, Dep Assoc. Administrator for Science Don Thomas, Chief Scientist for ISS

FSB Program:

- New Leadership Gary Jahns, Manager of FSB Research Integration Office (RIO)
- '04 Flight research announcement released emphasis on "model organisms":
 - Saccharomyces cerevesiae
 - Caenorhabditis elegans
 - Drosophila melanogaster
 - Arabidopsis thaliana

Bioastronautics Critical Path Roadmap (BCPR)

(Released: June 2003)

- The BCPR identified 55 critical risks areas to human safety, health and performance in long-duration space flight missions.
- Data in each of these areas is needed in order to reduce risk to crew in support of NASA's Exploration Vision.
- Based on current rate of progress, and assuming 6 astronauts on orbit in ISS, it would take until 2038 to obtain statistically significant data on countermeasures for all these areas (B. Paloski, JSC).

Cell Biology Research is Critical to Human Spaceflight

Countermeasure Development

- Animal testing of countermeasures can require large "n": Testing of one compound, at just 2 concentrations, with a minimum of 3 timepoints, 6 animals required per grouping = 36 animals plus controls =72 animals for one relatively simple test, exclusive of gender and age testing.
- Cell, tissue and microorganism studies will allow for large numbers of compounds to be screened, at varying concentrations, and understanding of underlying mechanisms may direct future compound choices.

Environmental Monitoring

 Cell and microorganism cultures can be used as sentinel populations to generate biologically relevant monitoring of radiation damage, and potential microgravity effects on cells.

• Risk Assessment and Diagnosis

- Sentinels can be used to assess biologically relevant risks.
- Mars and Lunar missions may require in flight diagnostics. Crew blood, urine and cell cultures can be processed and analysed using cell culture hardware.

Cell and Tissue Culture Contribution to BCPR

Cell and tissue research can contribute to 16 out of 55 risks in 6 of the 12 risk areas

Risk area	Risk		
2		Bone Loss	
	10	Fracture & impaired healing	
	12	Renal stone formation	
3		Cardiovascular Mechanisms	
	13	Occurrence of serious cardiac dysrhythmias	
	14	Impaired cardiovascular response to orthostatic stress	
	15	Diminished cardiac function	
	17	Impaired cardiovascular response to exercise stress	
4		Environmental Health	
	51	Inability to maintain acceptable atmosphere – environmental contaminants	

Cell and Tissue Culture Contribution to BCPR

Risk area	Risk		
7		Immunology, Infection, and	
		Hematology	
	25	Altered wound healing	
	26	Altered host-microbial interactions	
	22	Immunodeficiency/infections	
	23	Carcinogenesis caused by immune system changes	
	24	Altered hemodynamic, cardiovascular dynamics – altered blood components	
	27	Allergies and hypersensitivity reactions	
8		Muscle Alterations and Atrophy	
	28	Loss of skeletal muscle mass	
	29	Inability to perform motor tasks	
10		Radiation Effects	
	38	Carcinogens caused by radiation	

FSB Cell Biology Grants Address Risk Areas

	ISK DISCIPLINE AREA	rants Addressing Risk Areas
1	dvanced Life Support	22
2	one Loss	16
3	ardiovascular Alterations	3
4	nvironmental Health	
5	ood and Nutrition	
6	uman Behavior and Performance	3
7	mmunology, Infection and Hematology	27
8	uscle Alterations and Atrophy	9
9	eurovestibular Adaptation	4
10	adiation Effects	7
11	linical Capabilities	
12	ultisystem (Cross Risk) Alterations	5
	Totals	96

Fundamental Space Biology Program 2003 - Center for Gravitational Biology Research

• Supported 4 cell	biology studies.		
Sharmila Battacharia, Ph.D.	Lockheed Martin	Drosophila Melanogastor responses to hypergravity	1-Foot Diameter Centrifuge
James Thompson, Ph.D	University of Oklahoma	Effects of Hypergravity and Vibration on Genetic and Stability: Pilot Studies with Drosophila Melanogastor	1-Foot Diameter Centrifuge
Alan S. Waldman, Ph.D.	University of South Carolina	Effect of Gravity on DNA Transactions in Mammalian Cells	Low Vibration Rotation Device/Hypergravity Facility for Cell Culture
Steven Weinstein, Ph.D.	San Francisco State University	Effects of Centrifugation on the Immune Response of Macrophages	1-Foot Diameter Centrifuge
• Supported 2 cell	hardware studies.		
Rita Briggs, Ph.D.	Lockheed Martin Astrobiology and Space Research Services	In-situ Space Gene Expression on Nanosatellites (ISGEN): The Use of Yeast Constructs to Monitor the Space Environment	20-G Centrifuge
Justin Jagger	Space Station Biological Research Project	Cell Culture Unit Hardware Tests	Low Vibration Rotation Device/Hypergravity Facility for Cell Culture

For more information about how to access these facilities: http://lifesci.arc.nasa.gov/CGBR/

Fundamental Space Biology Program 2003 Highlights - Workshops

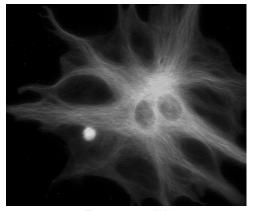
- Free-flyer workshop
- Enterprise questions workshops
- C. elegans, saccharomyces cerevisiae, plant, and microbial workshops
- Pre-ASGSB Workshop "What do you need to know about doing cell biology experiments in space?"
- Special interest subgroup at ASCB "Gravity and Mechanotransduction Cell Signaling"

Fundamental Space Biology Program 2003 Highlights - Flight support

Ground-based activities:

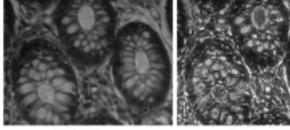
Small Payloads

- CEMSS-1 (C. elegans Model Specimens in Space) flight ready 6/04
- EMMYS-1 (Effect of Microgravity on Yeast Model Specimens, *S. cerevisiae*) flight ready 6/04
- PABS (Pseudomonas aeruginosa Bacteria in Space) PI : B. Pyle, flight ready 6/04


Flight activities:

Small Payloads

- 13P: Launched 1/29/04,
 - Yeast-GAP, PI: C. Nickerson, Co-I: T. Hammond
 - Experiment successfully activated and completed, awaiting return.
- 8S: Soyuz Dutch Science Mission (DSM) DELTA Flight, Launch date 4/19/04
 - ICE-First, International C. elegans Experiment, PI: C. Conley
- 14P: Launch Date 5/21/04
 - Yeast-GAP II. PI: C. Nickerson, Co-I: T. Hammond


Fundamental Space Biology Program 2003 Highlights - Cell Culture Unit (CCU) Flight hardware

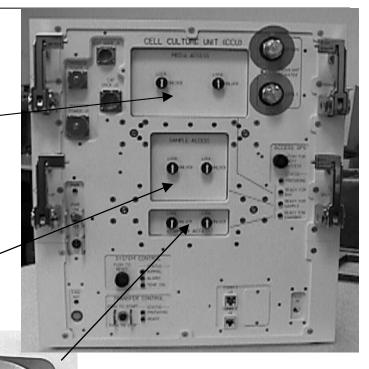
- August 2003 CCU System Critical Design Review (CDR) complete
- **September 2003** Engineering Development Unit (EDU) added to program to support crew interface reviews, acoustic testing, thermal testing, sector level configuration, and Video Microscopy System (VMS)
 - Front panel complete Nov. 2003 Reviewed by crew
 - Core unit complete Jan. 2004 Acoustic testing in progress

Fluorescence 20X

- October 2003 Single Loop for Cell Culture (SLCC) program initiated
- **December 2003** Safety and Crew Interface technical interchange meetings held at JSC

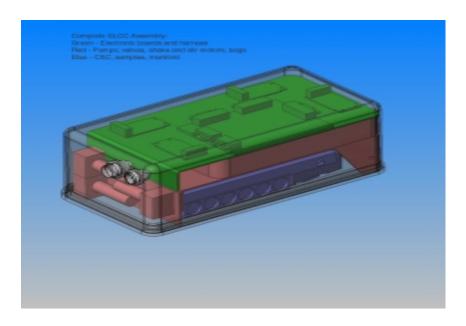
20X Phase Contrast

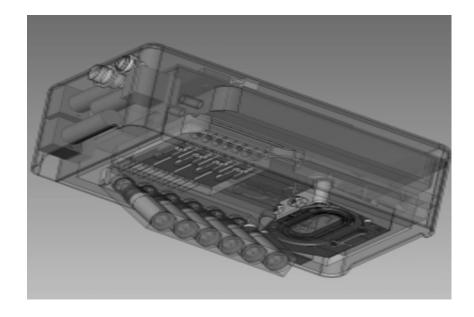
• **February 2004** - Software, Support Equipment, and Video Microscopy System (VMS) CDR complete


CCU Flight Hardware Configuration

Crew Accessible Items

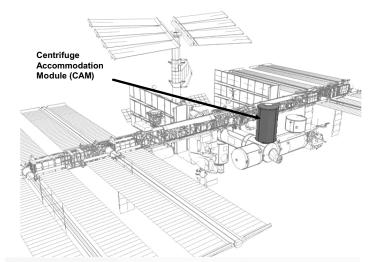
Sample Containers

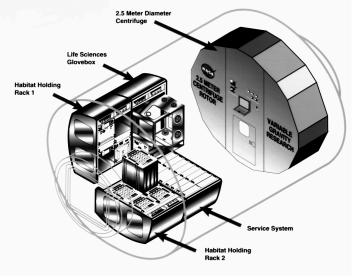

Engineering Development Unit


Cell Specimen Chambers

Single Loop Cell Culture (SLCC)

- Single Loop for Cell Culture (SLCC) (10 flight units)
 - Flight implementation of CCU single loop concept
 - Performs perfusion, limited sampling, and fixation within sealed container
 - Flies in CGBA ICM or SSBRP Incubator
 - Rapid development for launch readiness in second half of 2004


Fundamental Space Biology 2004 Plan


Ground-Research:

NRA: April/May release date

• Flight:

- International Flight NRA: released
 2/04, responses due 5/04
- Upcoming Flights:
 - CEMSS-1 (*C. elegans* Model Specimens in Space) flight ready 6/04
 - EMMYS-1 (Effect of Microgravity on Yeast Model Specimens, *S. cerevisiae*) flight ready 6/04
 - PABS(*Pseudomonas aeruginosa* Bacteria in Space) PI : B. Pyle, flight ready 6/04
- ISS SSBRP ongoing hardware development

Feedback from Cell Science Questionnaires

- Meeting now held over Saturday
- Contact information now included with program (in back).
- How to handle growth?
 - Parallel sessions vs. 4th day? 70% said parallel sessions
 - New question: parallel session vs. questionnaire
- Openness of meeting?
 - Presentations
 - Attendance
 - Publication of abstracts

Please fill out questionnaire!

OBPR URL: www.spaceresearch.nasa.gov

Fundamental Space Biology:

www.fundamentalbiology.arc.nasa.gov/

Fundamental Space Biology Program

Backup charts

